skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yifei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This minireview addresses responsive polymer capsules and their applications beyond drug delivery, focusing on structure–property relationships. 
    more » « less
  2. A machine learning model for reliable director fields calculation from raw experimental images of active nematics. The model is accurate, robust to noise and generalizable, enhancing analysis such as the detection and tracking of topological defects. 
    more » « less
  3. To date, major challenges (Ed.)
  4. This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, can enhance liposome’s fusogenicity. Further concentrating these lipids into smaller patches on the surface of liposomes led to an increased level of fusogenicity. These experimental findings are supported by numerical simulations using a mathematical model for phase-separated charged liposomes. Findings of this study may be used for design and development of highly fusogenic liposomes with minimal level of toxicity. 
    more » « less
  5. Solid–liquid composites (SLCs) combine the properties of solids and liquids, enhancing functionalities and expanding potential applications. Traditional methods for creating SLCs often face challenges such as low mass transfer efficiency, difficulty in controlling separation behavior, and substantial waste production. Herein, we report a new approach to solve these challenges by using disulfide-based responsive polymeric capsule shells to make liquid-filled monoliths for carbon capture. The capsules are prepared through interfacial polymerization and contain either non-polar poly(α-olefin)432 or highly polar 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][TFSI]) at 74–82 wt%. Upon gentle heating, the dynamic disulfide bonds of the isolated capsules undergo bond exchange, leading to the fusion of capsule shells into free-standing monoliths that retain >89 wt% of their liquid core and remain stable for at least two weeks. These monoliths demonstrate CO2 absorption rates and capacities comparable to their capsule counterparts; further, in response to radiofrequency (RF), they reach the CO2 desorption temperature in only ∼31 s. This innovative system addresses the limitations of conventional SLC fabrication techniques, offering a versatile and practical approach to fusing polymer capsule shells for applications across separation, energy storage, and carbon capture applications. 
    more » « less
  6. We propose a fast algorithm for computing the entire ridge regression regularization path in nearly linear time. Our method constructs a basis on which the solution of ridge regression can be computed instantly for any value of the regularization parameter. Consequently, linear models can be tuned via cross-validation or other risk estimation strategies with substantially better efciency. The algorithm is based on iteratively sketching the Krylov subspace with a binomial decomposition over the regularization path. We provide a convergence analysis with various sketching matrices and show that it improves the state-of-the-art computational complexity. We also provide a technique to adaptively estimate the sketching dimension. This algorithm works for both the over-determined and under-determined problems. We also provide an extension for matrix-valued ridge regression. The numerical results on real medium and large-scale ridge regression tasks illustrate the efectiveness of the proposed method compared to standard baselines which require super-linear computational time. 
    more » « less